Phase Space Reconstruction Based CVD Classifier Using Localized Features
نویسندگان
چکیده
منابع مشابه
Monthly runoff prediction using phase space reconstruction
A nonlinear prediction method, developed based on the ideas gained from deterministic chaos theory, is employed: (a) to predict monthly runoff; and (b) to detect the possible presence of chaos in runoff dynamics. The method first reconstructs the single-dimensional (or variable) runoff series in a multi-dimensional phase space to represent its dynamics, and then uses a local polynomial approach...
متن کاملDefining Classifier Regions for WSD Ensembles Using Word Space Features
Based on recent evaluation of word sense disambiguation (WSD) systems [10], disambiguation methods have reached a standstill. In [10] we showed that it is possible to predict the best system for target word using word features and that using this 'optimal ensembling method' more accurate WSD ensembles can be built (3-5% over Senseval state of the art systems with the same amount of possible pot...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملSpeech recognition using reconstructed phase space features
This paper presents a novel method for speech recognition by utilizing nonlinear/chaotic signal processing techniques to extract time-domain based phase space features. By exploiting the theoretical results derived in nonlinear dynamics, a processing space called a reconstructed phase space can be generated where a salient model (the natural distribution of the attractor) can be extracted for s...
متن کاملPhoneme Classification Using Naive Bayes Classifier in Reconstructed Phase Space
A novel method for classifying speech phonemes is presented. Unlike traditional cepstral based methods, this approach uses histograms of reconstructed phase spaces. A Naïve Bayes classifier uses the probability mass estimates for classification. The approach is verified using isolated fricative, vowel, and nasal phonemes from the TIMIT corpus. The results show that a reconstructed phase space a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2019
ISSN: 2045-2322
DOI: 10.1038/s41598-019-51061-8